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Abstract. Equilibrium properties for the δ-phase of Pu have been calculated. Taking into account
strong electron correlations in the 5f shell, we show how the equilibrium volume and the bulk
modulus are improved in comparison to previous results using the local density approximation
(LDA) or the generalized gradient approximation (GGA). In addition, an augmentation of the
orbital moment is observed following Hund’s rules, reducing the total magnetic moment. The
stability of the δ-phase is explored and for the first time a positive value for the tetragonal shear
constant is found.

1. Introduction

Among the actinides, plutonium is one of the most intriguing metals because of its spectacular
and unusual properties. In the actinide series the competition between the itinerant and local
character of the f electrons is responsible for its unique properties. The series can be divided
into two sub-series: the light (90Th–94Pu) and the heavy (95Am and beyond) actinides, with
very different characteristics. The volume behaviour of the light actinides is very similar to
that found for the transition metals, with a parabolic decrease of the volume as a function
of atomic number. This trend can be explained by the itinerant character of the 5f electrons
which participate in the chemical bonding, and thus the light actinides are considered to form
a 5f transition series. The density functional theory in the local density approximation (LDA)
gives a good description of the ground state of the light actinides in agreement with experiment
(except for Th) and a simple Friedel model can explain the parabolic decrease of the volumes.
However, neptunium and plutonium deviate from this theoretical estimation, since Pu has a
larger volume than Np. Furthermore, in contrast to the transition metals which adopt close-
packed structures, such as body-centred cubic, face-centred cubic and hexagonal close packed,
the light actinides have very distorted and open structures. With the filling of the f shell, the
complexity increases to reach a maximum with the ground-state crystal structure of Pu (α-Pu)
which is monoclinic with 16 atoms/cell and is the most distorted structure of the light actinides.
Structural differences between light actinides and transition metals—in spite of their exhibiting
the same electronic behaviour—have their roots in the bandwidth of the dominant electrons
for bonding (d electrons in transition metals, f electrons in light actinides). In fact, Söderlind
et al [1] have shown that the 5f bandwidth is sufficiently narrow at the equilibrium volume
of the light actinides (∼1–3 eV) to favour a Peierls distortion [2], in contrast to the case for
the transition metals (d bandwidth: ∼3–10 eV). Their calculations led them to the conclusion
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that for the same bandwidth, metals crystallize in the same structure. For heavy actinides, the
pattern is reversed: 5f electrons are localized, the crystal structures are more compact like fcc
or hcp and this sub-series may be described as a second rare-earth series. This picture places
plutonium as the link between the two series, at the transition from delocalized to localized
states, and thus it adopts some characteristics of the two series.

Plutonium has no fewer than seven different crystalline forms—more than any other
metal—and so shows the most complicated phase diagram in the periodic table. Owing to
its position in the actinides’ series, it is difficult to say whether Pu is a pure light actinide.
It is very interesting to note that the phase diagram reproduces the same aspects as for the
actinide series. In fact the α-, β- (monoclinic with 34 atoms/cell) and γ - (orthorhombic with
8 atoms/cell) phases contrast with the high-temperature simple structures δ (fcc) and ε (bcc)
which are traditional close-packed structures. In addition there are large volume changes
between phases, the δ-phase assuming the lowest density (including the liquid), and from
δ-Pu to α-Pu there is a 17% volume decrease. Similar collapses are only observed in a few
cases, like Ce (γ → α phase transition) and Sm compounds where this transition can be
understood in terms of a Mott transition from localized to itinerant 4f states [3]. The situation
for the plutonium element is certainly connected with some of its unusual properties [4] like:
the electrical resistivity, the thermal conductivity—which is the lowest reported for any pure
metal [4]—or the negative thermal dilatation coefficient of the δ- and δ′-phases, for instance.

Recent developments in the theoretical understanding of the electronic structure of Pu
seem to show that the anomalously large volume of α-Pu relative to that of α-Np is the result
of the proximity to the onset of 5f localization and a sign of electron correlation. Kollar et al [5]
compare the LDA and GGA results and show that the upturn between Pu and Np is due to
correlation effects not included in the LDA but described in the GGA. Their calculations
also show that the spin–orbit coupling improves the volume but that it is not responsible
for the upturn. Söderlind and co-workers [6] conclude for α-Pu that the 5f band dominates
the bonding and the 6d band is less important for the crystal structure, contrary to previous
results of van Ek et al [7]. So we can assume that the large volume of the δ-phase arises
from localized 5f states and predominantly 6d bonding, whereas 5f bonding dominates for the
more open structures. However, we must modify this explanation, since the δ-Pu volume is
located between the α-phase (delocalized electrons for the most part) and americium (localized
electrons) and is probably intermediate between these extremes. To understand the α → δ

phase transition, it seems essential to appreciate the gain in energy arising from the Hund’s
rules for localized 5f states and f-band cohesion for itinerant 5f states. Experimental results
confirm this picture [4, 8, 9]: the XP spectra of α-Pu show a strong signal at the Fermi level
corresponding to the 5f states, whereas for the δ-Pu this signal is shifted to higher binding
energies. At the same time the bandwidth is broadened by 15% from α-Pu to δ-Pu and the
spectral weight at EF is reduced.

The LDA, which is sufficient to describe light actinides, with however the largest dis-
agreement for α-Pu, underpredicts the δ-phase volume by of the order of 35% for the LDA
and 28% for the GGA [10]. δ-Pu is not the only material for which the LDA fails to reproduce
the ground-state properties; Mott insulators, like 3d transition metal oxides, or some transition
metal perovskites [11], and a great variety of materials whose the electronic structure contains
partially filled valence d or f shells complete the list. It is well established that this deficiency
of the LDA is linked to the strong on-site repulsion U between electrons in the localized d
or f states. In fact, correlation effects arise when U exceeds or equals the mean conduction
bandwidthW . In this contribution we used the LDA +U method to include the f–f correlation
energy in the LDA band-structure calculation. This method has been widely tested for metal
oxides [12] and high-Tc superconductors [13] with good results. It is still a one-electron theory
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but the one-electron potentials are orbital dependent and allow an orbital polarization [14].
The purpose of the present paper is to perform a study of the f–f interactions in plutonium.

With an appropriate treatment of the correlations we will show how the bulk properties of the
δ-phase can be found. In section 2 we describe the LDA + U theory to show how the LDA
functional is modified to take into account the correlation between f electrons, in section 3 the
details of calculations are presented and in section 4 we present our results, and our point of
view regarding the situation in plutonium.

2. The LDA + U method

We give here a short description of the LDA +U method; for a review, see reference [15].
The electrons are separated into two subsystems: delocalized s, p and d electrons which are
described by an orbital-independent one-electron potential (LSDA); and localized 5f electrons
for which we take into account the orbital degeneracy and a Coulomb interaction of the form
1
2U

∑
σ �=σ ′ nσnσ ′ , where nσ are f-orbital occupancies. In a spin- and orbitally degenerate

system, we can consider an Hamiltonian of the form

Ĥ =
∑
i,j

∑
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∑
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tmm
′

ij ĉ
†
imσ ĉjm′σ +

(U − J )

2

∑
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U

2
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(1)

where ĉjm′σ is an annihilation operator of an electron with orbital index m and spin σ(=↑,↓)
at the lattice site i, tmm

′
ij are the hopping integrals and n̂im′−σ is the number operator of the

f electron at site i, orbital m with spin σ . Thus the first term of (1) describes hopping of
electrons between lattices sites i and j ; interactions between localized electrons are described
by the second and third terms, where U and J represent the on-site Coulomb and exchange
interactions respectively. Thus, with the Hamiltonian (1), it is possible to achieve the filling
of incomplete f (or d) shells in the atomic limit according to Hund’s rules, whereas in a simple
LSDA approach, all orbitals have the same occupancy.

If we want to correct the LSDA functional for localized electrons we must first extract
the LSDA treatment to avoid double counting of the interaction. The spin-density functional
theory assumes a local exchange–correlation potential which is a function of the local charge
and spin densities; it is a weak-coupling mean-field theory [16], so fluctuations around the
average occupancies are neglected. In the mean-field approximation we can write

n̂mσ n̂m′σ ′ = n̂mσ nm′σ ′ + n̂m′σ ′nmσ − nmσnm′σ ′ (2)

where nmσ = is the mean value of n̂mσ and nσ = ∑
m nmσ . If we insert this approximation in

equation (1), we obtain for the potential energy in the mean-field approximation EMF

EMF = U − J

2

∑
i

∑
σ

niσ (niσ − nimσ ) +
U

2

∑
i

∑
σ

niσ ni−σ . (3)

What is the role of the LSDA in this energy? Solovyev et al [17] have discussed this
‘removed energy’ intensively; they proposed extracting an energy-only function of the total
number of electrons per spin niσ—this expression can be obtained from (1) in an atomic limit
where the single-particle occupations nimσ are close to 0 or 1:

ELSDA
cor = U − J

2

∑
iσ

niσ (niσ − 1) +
U

2

∑
iσ

niσ ni−σ . (4)

This energy is now subtracted from EMF to obtain the total-energy correction for the
localized states:

�E = U − J

2

∑
iσ

niσ (1 − nimσ ) = U − J

2

∑
imσ

(nimσ − n2
imσ ). (5)
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Then, the correction to the potential acting on the localized orbital (mσ ) is found by taking
the derivative of (5) with respect to the occupation number nimσ :

�Vimσ = (U − J )

(
1

2
− nimσ

)
. (6)

Thus, we have obtained an orbital-dependent one-electron potential. In our calculations,
we used for U and J the Coulomb and exchange matrices Umm′ and Jmm′ defined from Slater
integrals [18].

3. Computational approach

We have used a full-potential linear muffin-tin orbital (FP-LMTO) [12,19] method with three
approximations for the exchange–correlation potential: the local spin-density approximation
(LSDA) with the von Barth–Hedin density functional, the generalized gradient approximation
(GGA) introduced by Perdew and Wang [20] and the LSDA + U following (5) and (6). In
most cases the generalized gradient correction, more particularly in actinides [21], improves the
results for the volumes and bulk moduli compared with the LDA. In the FP-LMTO method the
crystal is divided into non-overlapping muffin-tin spheres and the remaining interstitial region.
The potential is expanded in spherical harmonics inside the spheres—in our calculations we
have worked with a cut-off lmax = 6—and is Fourier transformed in the interstitial region.
We have treated three kinds of state: deep-core states, which are found by solving Dirac’s
equation for free atoms with the potential taken as the spherical part of the crystalline potential
inside the MT sphere and zero outside, valence states which are described with three energy
panels and semicore states which are treated in a separate energy panel since they have little
hybridization with valence states. We have chosen a ‘standard’ actinide basis set [6] with 7s,
6p, 6d, 5f in the valence band and 6s as the semicore orbital; the 6p states are semicore-like but
are treated as bands in the main valence panel. The self-consistent, all-electron calculations
were performed with a fully relativistic treatment of the core states and a scalar-relativistic
treatment with spin–orbit coupling for the valence states. The total and partial densities of states
were calculated using 144 k-points in the fcc phase. For the elastic constant calculations this
number is increased to 376 for the tetragonal shear calculation and to 744 for the orthorhombic
shear owing to the very small energy difference between different strains. For the Coulomb
interaction strengths we have used the value 0.23 Ryd calculated by Bandyopadhyay and
Sarma [22] from Hartree–Fock–Slater atomic calculations.

4. Results and discussion

We present in figure 1 the equilibrium volume V0 for our exchange–correlation potentials. The
curves are obtained by a Birch–Murnaghan fit of the total energy versus volume points. We
have derived from these fits the value of the bulk modulus B0 for the different approximations
(see table 1). Our results for δ-Pu show that the FP LDA and GGA calculations underestimate
V0 and overestimate B0; these trends are in agreement with the work of Söderlind et al [21].
The GGA volume, although better than the LDA value, shows a discrepancy of about 27% from
the experimental value. As we expected, the volume is improved in a localized f-state treatment
(figure 1) and forU = 0.23 Ryd we found an equilibrium volume of 25.21 Å3 in agreement with
the experimental value of 25.156 Å3. We have corrected the high-temperature value of 24.9 Å3

by the negative thermal expansion coefficient (−0.26 × 10−4 K−1) since our calculations are
made for zero temperature. In addition to the volume results, we found a better bulk modulus,
with a value of 60 GPa for U = 0.23 Ryd compared to the GGA result of 153 GPa. This
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Figure 1. The total energy of δ-Pu versus the volume calculated using the LDA, the GGA and the
LSDA + U method.

Table 1. Equilibrium volumes, bulk moduli and elastic constants for δ-Pu obtained with a FP-
LMTO method, calculated including generalized gradient corrections of Perdew–Wang type or
Hubbard corrections. Comparison with experimental values and other calculations. The value of
C′ for α-Ce is a result from reference [30].

Veq (Å3) B0 (GPa) C′ (GPa) C44 (GPa) C11 (GPa) C12 (GPa)

FPLMTOa LDA 16.18 214.2 −48
GGA 17.67 143.5

FCDb LDA 19.66
GGA 20.72

Present calculation GGA 18.37 136 −35
LDA + U 25.21 61 12 75 69 53

Experimentsc 24.91 29.91 4.78 33.59 36.28 26.73

Th (experiment) 32.1 57.7 13.2 47.8

α-Ce (experiment) 28.1 29 11.9 (theory)

a Reference [21].
b Reference [5].
c Reference [24].

improvement is obviously bound up with the volume’s increase. Experimentally, with a δ-
stabilized Pu–1 wt% Ga sample, Calder, Draney and Wilcox [23] found B0 = 32.4 GPa in
agreement with the ultrasonic measurement B0 = 29.9 GPa of Ledbetter and Moment [24].
Pénicaud [25], with a relativistic orbital method and by neglecting the interatomic hybridization
and overlap of the 5f orbitals, has obtained B = 70 GPa.
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We have also investigated the possibility of a magnetic moment for δ-Pu but this problem is
very controversial. All spin-polarized density functional calculations give a non-zero magnetic
moment for the δ-phase volume [26,27]. Experimentally [4], it seems that the δ-phase is non-
magnetic, but recently Méot-Reymond and Fournier [28] have performed low-temperature
magnetic susceptibility measurements on stabilized alloys in the δ-phase and on pure plutonium
(α-phase). They found magnetic moments µeff of 1.7 µB and 1.2 µB for Pu–6 at.% Ce and
Pu–6 at.% Ga respectively. It is impossible to reach a conclusion regarding the pure δ-phase
because, as it is not stable at low temperature, all the experimental results have been obtained
on δ-stabilized alloys. The atomic Pu configuration is 7s25f6 whereas for the solid we found
generally 7s26d15f5, so if f electrons are fully polarized in the 5f shell and the first and second
Hund’s rules respected, we expect a spin moment of 5 µB and an orbital moment of 5 µB ,
coupled antiparallel to the spin, yielding a total magnetic moment of 0 µB . This filling of
the 5f shell is the only one among those for the actinides which gives this remarkable result.
Solovyev et al [27] obtained values of MS = 4.5 µB , ML = −2.4 µB and MJ = 2.1 µB at
the experimental δ-phase volume. These calculations were performed in the atomic sphere
approximation (ASA) with spin–orbit coupling. In the full-potential approximation and with
the LSDA we found similar values: MS = 4.23 µB , ML = −1.94 µB and MJ = 2.29 µB .
In a LSDA + U treatment and at the δ-phase volume, MJ takes values of 1.55 µB and 1.3 µB
for U = 0.23 Ryd and U = 0.33 Ryd. So the localization of f electrons reduces the total
magnetic moment in comparison with a delocalized treatment, and this agrees well with a
non-magnetic δ-Pu. In fact the spin contribution to the total magnetic moment is compensated
by the orbital contribution but not enough to cancel it: MS = 5 µB and ML = −3.45 µB
for U = 0.23 Ryd. However, according to Hund’s rules a stronger localization increases the
orbital moment and we reach the value of ML = −3.7 µB for U = 0.33 Ryd. MS reaches a
limit value of 5 µB which corresponds to a total polarization of the 5f electrons in the spin-up
channel. So the localization is a redistribution within the f shell with respect of Hund’s rules:
an orbital polarization [14].

We present in figure 2 the calculated density of states (DOS) for the volumes corresponding
to the theoretical (figure 2(a)) and experimental (figure 2(b)) δ-values in the GGA functional.
The 5f and 6d partial DOS are also represented and it is obvious that the 5f contribution
dominates for all volumes. We can see, as expected, a decrease in the 5f bandwidth when the
volume increases, since the 5f overlap becomes less and less important. For the two volumes
the Fermi energy is located between the 5f5/2 and the 5f7/2 bands in a minimum of the density
of states.

The DOS for the magnetic LDA solution are shown in figure 3(a). First, we can see
that in the spin-polarized case, the band is strongly broadened, particularly for energy above
EF . In addition, the DOS value at the Fermi level is also considerably increased, and the
separation between the 5f5/2 and the 5f7/2 peaks has disappeared. This is consistent with ASA
calculations [27].

We can see in the LDA +U DOS (figure 3(b)) that the 5f are no longer pinned to the Fermi
level, but are below, centred around −2 eV. The 5f-state localization is of course at the origin of
this withdrawal of the 5f electrons from the Fermi level. There is a large reduction of the density
of states at the Fermi level with an LDA + U value of N(EF ) = 56 states Ryd−1 compared to
the spin-polarized solution of about 190 states Ryd−1. Recently Joyce’s experiments [29] have
shown a broader peak centred 1.7 eV below EF and dominated by 5f-orbital character, and
we can associate this with the region centred around 2 eV in our LDA + U DOS. The γ -term
of the electronic specific heat for δ-Pu is very large (53 mJ mol−1 K−2) and twice as high as
for α-Pu (22 mJ mol−1 K−2), suggesting a narrow resonant state pinned at the Fermi energy,
similar to the situation found in the heavy-fermion systems of uranium. In our DOS we do
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Figure 2. Electron densities of states (DOS) for the theoretical (a) and experimental (b) volumes
of δ-Pu obtained using the GGA.
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Figure 3. Electron densities of states (DOS) at the experimental volume of δ-Pu obtained using
the LSDA (a) and the LSDA + U method (b).
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not reproduce this peak, and it seems necessary to introduce many-body effects to retrieve it.
More experience must be gained before we can explain the origin of this peak at the Fermi
level.

To illustrate the predominant role played by the f-electron behaviour, we have explored
the Bain path of Pu. In plutonium an intermediate phase (δ′) occurs in the δ–ε (fcc–bcc)
transition. The δ′-phase has a bct structure with c/a = 1.33. As for the bcc and fcc structures,
they can be described as peculiar bct structures with c/a = 1 and c/a = √

2 respectively.
So the transition δ → δ′ → ε is just a deformation of the tetragonal parameter c/a via the
values 1.41 → 1.33 → 1.0—a Bain deformation. We have performed a study of the energy
variation as a function of the c/a ratio for the bct structure: the Bain path. The results are
shown in figure 4 for an itinerant and a localized treatment of the f electrons. We can see
that the localized configuration stabilizes the fcc structure whereas the itinerant configuration
favours a more distorted structure: bct with c/a near 1.2. An interesting result is the presence
of another minimum in the localized picture. It corresponds to a c/a = 1.3, close to the value
1.33 for the δ′-structure. The slight change in the volume which followed the δ–δ′ transition
(<1%) and the fact that the δ′-phase value of c/a is slightly lower than

√
2 indicate that the

δ′-structure is a distorted fcc structure, obtained by a weak tetragonal distortion. However, the
bcc structure is located in a maximum and so it is not stabilized in our LDA + U treatment,
like in the LDA. The theoretical volume of bcc-Pu at 0 K may be responsible for this result;
indeed, the linear thermal expansion coefficient of the bcc structure is positive whereas it is
negative for δ- and δ′-structures. We have also calculated the elastic constant C ′ which is a

Figure 4. The Bain path for Pu. c/a = √
2 and c/a = 1 correspond to fcc and bcc structures

respectively.
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direct measurement of the phase stability under a tetragonal deformation. It is obtained with
a volume-conserving tetragonal strain:( 1 + δ 0 0

0 1 + δ 0
0 0 1/(1 + δ)2

)
(7)

where δ is an infinitesimal strain (<0.01). The calculations were done at the experimental δ-
phase volume. As expected from the Bain path, the value ofC ′ is highly negative in a LDA [30]
or a GGA calculation (see table 1). With the LDA + U method we obtained a positive value
of 12 GPa, compared to the experimental value of 4.75 GPa [24]. We have also reported in
table 1 the values of the other cubic elastic constants. The existence of the δ′-phase is closely
connected to the extremely small value of C ′, since in this case a fcc → bct transition requires
a slight change in energy. This is confirmed by the energy difference between the fcc and bct
structures in figure 4 (∼1 mRyd).

To understand the stabilization of the δ-phase in Pu it is important to note that, in the
actinides, the phase stability is driven by 5f electrons. An itinerant character of these electrons
yields a distorted structure (light actinides) whereas a localized character yields symmetric
structures (heavier actinides). The principal effect of the Hubbard correction is to prevent
5f participation in the bonding: the 5f electrons are removed from the Fermi level to higher
binding energies. The consequence is the stabilization of the fcc structure. Following this idea,
it is worth making a connection between δ-Pu, when the strong on-site repulsion is taken into
account, and two other materials: α-Ce and Th, which adopt the fcc structure. The situation
in these two metals is very similar; they each have one f electron in the atomic configuration
and in the solid its influence on the bonding is negligible. We can see that our results for C ′,
Veq and B0 bear strong similarities to the experimental and theoretical values for α-Ce and Th
(table 1), suggesting the same electronic behaviour.

In summary, by means of a treatment of the strong correlations between 5f electrons we
have obtained a major improvement in comparison to the standard band result. Indeed, an
accumulating body of results suggests, as previously expected, that the localization of the f
electrons is crucial for describing δ-Pu. The anomalous experimental volume of the δ-phase
is restored, with a good trend for the bulk modulus. The localization of the electrons in the 5f
shell according to Hund’s rules produces a decrease of the total magnetic moment in agreement
with experiment. For the first time we have shown that the fcc phase is stabilized (C ′ > 0),
contrary to LDA or previous calculation results, as a direct consequence of the correlations.
All elastic constants have been calculated and good orders of magnitude have been obtained.
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